Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus.

Research output: Contribution to journalArticle

Abstract

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.

Details

Authors
  • Anubha Mahajan
  • Xueling Sim
  • Hui Jin Ng
  • Alisa Manning
  • Manuel A Rivas
  • Heather M Highland
  • Adam E Locke
  • Niels Grarup
  • Hae Kyung Im
  • Pablo Cingolani
  • Jason Flannick
  • Pierre Fontanillas
  • Christian Fuchsberger
  • Kyle J Gaulton
  • Tanya M Teslovich
  • N William Rayner
  • Neil R Robertson
  • Nicola L Beer
  • Jana K Rundle
  • Jette Bork-Jensen
  • Claes Ladenvall
  • Christine Blancher
  • David Buck
  • Gemma Buck
  • Noël P Burtt
  • Stacey Gabriel
  • Anette P Gjesing
  • Christopher J Groves
  • Mette Hollensted
  • Jeroen R Huyghe
  • Anne U Jackson
  • Goo Jun
  • Johanne Marie Justesen
  • Massimo Mangino
  • Jacquelyn Murphy
  • Matt Neville
  • Robert Onofrio
  • Kerrin S Small
  • Heather M Stringham
  • Ann-Christine Syvänen
  • Joseph Trakalo
  • Goncalo Abecasis
  • Graeme I Bell
  • John Blangero
  • Nancy J Cox
  • Ravindranath Duggirala
  • Craig L Hanis
  • Mark Seielstad
  • James G Wilson
  • Cramer Christensen
  • Ivan Brandslund
  • Rainer Rauramaa
  • Gabriela L Surdulescu
  • Alex S F Doney
  • Lars Lannfelt
  • Allan Linneberg
  • Bo Isomaa
  • Tiinamaija Tuomi
  • Marit E Jørgensen
  • Torben Jørgensen
  • Johanna Kuusisto
  • Matti Uusitupa
  • Veikko Salomaa
  • Timothy D Spector
  • Andrew D Morris
  • Colin N A Palmer
  • Francis S Collins
  • Karen L Mohlke
  • Richard N Bergman
  • Erik Ingelsson
  • Lars Lind
  • Jaakko Tuomilehto
  • Torben Hansen
  • Richard M Watanabe
  • Inga Prokopenko
  • Josee Dupuis
  • Fredrik Karpe
  • Markku Laakso
  • Oluf Pedersen
  • Jose C Florez
  • Andrew P Morris
  • David Altshuler
  • James B Meigs
  • Michael Boehnke
  • Mark I McCarthy
  • Cecilia M Lindgren
  • Anna L Gloyn
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Endocrinology and Diabetes
Original languageEnglish
Article numbere1004876
JournalPLoS Genetics
Volume11
Issue number1
Publication statusPublished - 2015
Publication categoryResearch
Peer-reviewedYes

Total downloads

No data available