Implant size and fixation mode strongly influence tissue reactions in the CNS.

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Implant size and fixation mode strongly influence tissue reactions in the CNS.

AU - Thelin, Jonas

AU - Jörntell, Henrik

AU - Psouni, Elia

AU - Garwicz, Martin

AU - Schouenborg, Jens

AU - Danielsen, Nils

AU - Eriksson Linsmeier, Cecilia

PY - 2011

Y1 - 2011

N2 - The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 µm) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 µm) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions.

AB - The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 µm) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 µm) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions.

U2 - 10.1371/journal.pone.0016267

DO - 10.1371/journal.pone.0016267

M3 - Article

VL - 6

JO - PLoS ONE

T2 - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 1

M1 - e16267

ER -