Incomplete lipid chain freezing of sonicated vesicular dispersions of double-tailed ionic surfactants

Research output: Contribution to journalArticle

Abstract

Lipid freezing in dilute sonicated vesicular dispersions was studied using differential scanning calorimetry (DSC) and H-1 NMR. For charged, anionic, or cationic lipids, approximately half of the lipids remain in a fluid state when cooled 20 degrees C below the main chain melting temperature. With a zwitterionic phospholipid, on the other hand, essentially no supercooling of the liquid state was observed. The observations are analyzed in terms of the nucleation and growth of flat solid domains in originally fluid spherical vesicles. As the solid domains grow, the remaining fluid domain is deformed, resulting in a curvature stress. Depending on the vesicle size and the bilayer bending rigidity, the solid domain growth may terminate as the gain in cohesive free energy is balanced by the curvature stress of the remaining fluid domain. It is argued that high bending rigidities are required for, having a significant supercooling, which is why it is only observed for charged lipids.

Details

Authors
  • Pieter Saveyn
  • Paul Van der Meeren
  • Jan Cocquyt
  • Torbjörn Drakenberg
  • Gerd Olofsson
  • Ulf Olsson
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Pages (from-to)10455-10462
JournalLangmuir
Volume23
Issue number21
Publication statusPublished - 2007
Publication categoryResearch
Peer-reviewedYes