Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations

AU - Andersson, Johan

AU - Linér, Mats

AU - Bjursten, Henrik

PY - 2009

Y1 - 2009

N2 - The concentration of the protein S100B in serum is used as a brain damage marker in various conditions. We wanted to investigate whether a voluntary, prolonged apnea in trained breath-hold divers resulted in an increase of S100B in serum. Nine trained breath-hold divers performed a protocol mimicking the procedures they use during breath-hold training and competition, including extensive preapneic hyperventilation and glossopharyngeal insufflation, in order to perform a maximum-duration apnea, i.e., "static apnea" (average: 335 s, range: 281–403 s). Arterial blood samples were collected and cardiovascular variables recorded. Arterial partial pressures of O2 and CO2 (PaO2 and PaCO2) were 128 Torr and 20 Torr, respectively, at the start of apnea. The degree of asphyxia at the end of apnea was considerable, with PaO2 and PaCO2 reaching 28 Torr and 45 Torr, respectively. The concentration of S100B in serum transiently increased from 0.066 µg/l at the start of apnea to 0.083 µg/l after the apnea (P < 0.05). The increase in S100B is attributed to the asphyxia or to other physiological responses to apnea, for example, increased blood pressure, and probably indicates a temporary opening of the blood-brain barrier. It is not possible to conclude that the observed increase in S100B levels in serum after a maximal-duration apnea reflects a serious injury to the brain, although the results raise concerns considering negative long-term effects. At the least, the results indicate that prolonged, voluntary apnea affects the integrity of the central nervous system and do not preclude cumulative effects.

AB - The concentration of the protein S100B in serum is used as a brain damage marker in various conditions. We wanted to investigate whether a voluntary, prolonged apnea in trained breath-hold divers resulted in an increase of S100B in serum. Nine trained breath-hold divers performed a protocol mimicking the procedures they use during breath-hold training and competition, including extensive preapneic hyperventilation and glossopharyngeal insufflation, in order to perform a maximum-duration apnea, i.e., "static apnea" (average: 335 s, range: 281–403 s). Arterial blood samples were collected and cardiovascular variables recorded. Arterial partial pressures of O2 and CO2 (PaO2 and PaCO2) were 128 Torr and 20 Torr, respectively, at the start of apnea. The degree of asphyxia at the end of apnea was considerable, with PaO2 and PaCO2 reaching 28 Torr and 45 Torr, respectively. The concentration of S100B in serum transiently increased from 0.066 µg/l at the start of apnea to 0.083 µg/l after the apnea (P < 0.05). The increase in S100B is attributed to the asphyxia or to other physiological responses to apnea, for example, increased blood pressure, and probably indicates a temporary opening of the blood-brain barrier. It is not possible to conclude that the observed increase in S100B levels in serum after a maximal-duration apnea reflects a serious injury to the brain, although the results raise concerns considering negative long-term effects. At the least, the results indicate that prolonged, voluntary apnea affects the integrity of the central nervous system and do not preclude cumulative effects.

KW - glucose

KW - lactate

KW - ionized calcium

KW - hypoxia

KW - hemoglobin

U2 - 10.1152/japplphysiol.91434.2008

DO - 10.1152/japplphysiol.91434.2008

M3 - Article

VL - 107

SP - 809

EP - 815

JO - Journal of Applied Physiology

T2 - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 1522-1601

IS - 3

ER -