Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency

Research output: Contribution to journalArticle


High-fidelity qubit initialization is of significance for efficient error correction in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity, we theoretically propose the shortcut pulses via inverse engineering and further optimize the pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol, relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence time limited systems to approach an error rate manageable by quantum error correction. The approach may also be applicable to superconducting qubits, and any other systems where qubits are addressed in frequency.


External organisations
  • Soochow University
  • Shanghai University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
Original languageEnglish
Pages (from-to)8267-8282
Number of pages16
JournalOptics Express
Issue number6
Publication statusPublished - 2019 Mar 18
Publication categoryResearch