Isolation of photoreceptors in the cultured full-thickness fetal rat retina.

Research output: Contribution to journalArticle

Abstract

Purpose. To create a retina consisting mainly of photoreceptors for future use as donor tissue in retinal transplantation. Methods. Fetal full-thickness neuroretinas from Sprague Dawley rats 17 (E17) or 20 (E20) days post conception were placed in culture for 7 or 14 days. Explants and age-matched control retinas were examined by light microscopy and with a panel of immunohistochemical markers labeling all seven of the major retinal cell types. Results. E17 and E20 control retinas displayed vimentin labeled Muller cells, NF160 labeled ganglion cells and synaptic vesicles labeled with synaptophysin. The remaining cell types were found in control specimens of postnatal age 2 days and older. After 7 or 14 days in culture, all explants were significantly thinner than their aged-matched controls, and displayed multiple rows of cells organized in a single layer. Within this layer, they contained rhodopsin labeled rod photoreceptors, presynaptic vesicles and vertically arranged Muller cells. Transducin labeled cone photoreceptors were found in all but the youngest explants. Scattered PKC labeled rod bipolar cells and calbindin labeled horizontal cells were found in the inner part of most explants whereas beta-III-tubulin labeled ganglion cells and parvalbumin labeled amacrine cells were seen only sporadically. No NF160 labeled ganglion cells were found. Conclusions. Fetal full-thickness rat retina in vitro develops into a retina consisting of predominantly synapse containing cone and rod photoreceptors embedded in a scaffold of well organized Muller cells. These explant retina characteristics are well adapted for use as donor tissue in future retinal transplantation experiments.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Ophthalmology
Original languageEnglish
Pages (from-to)826-835
JournalInvestigative Ophthalmology & Visual Science
Volume50
Publication statusPublished - 2009
Publication categoryResearch
Peer-reviewedYes