Large eddy simulations of turbulent swirling flows in a dump combustor: a sensitivity study

Research output: Contribution to journalArticle

Abstract

Large eddy simulations (LES) of confined turbulent swirling flows in a model dump combustor are carried out. The simulations are based on a high-order finite difference method on a Cartesian grid, with the sub-grid scale stress tensor modelled using a scale-similarity model. The aims of this work are to study the physics of the flow and to evaluate the performance of LES method for simulation of the major features of turbulent swirling flows-the vortex breakdown, the highly anisotropic and fast-decaying turbulence structure. Influences of inflow/outflow conditions, combustor geometry, inlet swirl profile and Reynolds numbers on the vortex breakdown and turbulence structures are investigated. At very high swirl levels, the influence of the outflow conditions and the outlet geometry is fairly significant, not only at downstream near the outlet, but also at far upstream. At low Reynolds numbers, the onset of vortex breakdown is fairly sensitive to the change of Reynolds number; however, at high Reynolds numbers it is rather insensitive to the Reynolds number. Comparisons of LES results with experimental data are made. The LES results are shown to be in reasonably good agreement with the experimental data if appropriate inflow and outflow boundary conditions are imposed.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Fluid Mechanics and Acoustics

Keywords

  • boundary conditions, vortex breakdown, internal recirculation zone, swirling flow, large eddy simulation
Original languageEnglish
Pages (from-to)99-120
JournalInternational Journal for Numerical Methods in Fluids
Volume47
Issue number2
Publication statusPublished - 2005
Publication categoryResearch
Peer-reviewedYes