Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration

Research output: Contribution to journalArticle


Surface adsorption of Thermomyces lanuginosus lipase (TLL) - a widely used industrial biocatalyst - is studied experimentally and theoretically at different pH and salt concentrations. The maximum achievable surface coverage on a hydrophobic surface occurs around the protein isoelectric point and adsorption is reduced when either increasing or decreasing pH, indicating that electrostatic protein-protein interactions in the adsorbed layer play an important role. Using Metropolis Monte Carlo (MC) simulations, where proteins are coarse grained to the amino acid level, we estimate the protein isoelectric point in the vicinity of charged surfaces as well as the lateral osmotic pressure in the adsorbed monolayer. Good agreement with available experimental data is achieved and we further make predictions of the protein orientation at hydrophobic and charged surfaces. Finally, we present a perturbation theory for predicting shifts in the protein isoelectric point due to close proximity to charged surfaces. Although this approximate model requires only single protein properties (mean charge and its variance), excellent agreement is found with MC simulations.


External organisations
  • Novozymes A/S
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Pages (from-to)3303-3310
Number of pages8
JournalThe Journal of Physical Chemistry Part B
Issue number13
Publication statusPublished - 2016 Apr 21
Publication categoryResearch