LC-MS/MS characterization of xyloside-primed glycosaminoglycans with cytotoxic properties reveals structural diversity and novel glycan modifications

Research output: Contribution to journalArticle


Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure-function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC-MS/MS approach based on reversedphase dibutylamine ion-pairing chromatography and negativemode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD- 1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/ dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC-MS/MS approach for structural characterization of glycosaminoglycans.


External organisations
  • University of Gothenburg
  • Sahlgrenska Academy
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Medical Biotechnology
Original languageEnglish
Pages (from-to)10202-10219
Number of pages18
JournalJournal of Biological Chemistry
Issue number26
Publication statusPublished - 2018 Jan 1
Publication categoryResearch