Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes

Research output: Contribution to journalArticle

Abstract

The present study demonstrates the use of a simple and versatile melt-compounding route to prepare NaClO4-containing poly(ethylene oxide) PEO/clay nanocomposites combining excellent mechanical properties with a competitive level of the ionic conductivity. The nanostructure and the resulting thermal, mechanical and conductive properties of the salt-containing PEO/clay nanocomposites were found to be highly sensitive to the clay type, i.e. aspect ratio of the clay, to the presence of an organic modifier in the intergallery spacing, and to the salt concentration. The highest increase of the shear storage modulus is obtained in the presence of single silicate layers, thus an exfoliated nanostructure, having a high aspect ratio. These structures are only obtained with an (polar) organically modified clay (Cloisite 30B), regardless of the presence of salt. The use of non-organically modified clays (Cloisite Na+ and Laponite) resulted in intercalated nanocomposites, with only a minor improvement in stiffness. A strong interaction between the Na+ from NaClO4 and the Cloisite 30B silicate layers might be responsible for an increased PEO crystallinity and resultant additional increase in stiffness. A mechanism is proposed whereby the Na+ ions are drawn away from the PEO phase, to be complexed by the silicate layers, or even ion-exchanged with modifier cations. The addition of clay did not greatly affect the ion conductivity below the melt temperature of PEO. At higher temperatures, the nanocomposites displayed only slightly lower conductivities compared to the PEO/NaClO4 complex, due to the presence of the clay platelets.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Chemical Sciences
Original languageEnglish
Pages (from-to)7334-7345
JournalPolymer
Volume46
Issue number18
Publication statusPublished - 2005
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Polymer and Materials Chemistry (LTH) (011001041)