Microscopic Origin of the Logarithmic Time Evolution of Aging Processes in Complex Systems

Research output: Contribution to journalArticle

Abstract

There exists compelling experimental evidence in numerous systems for logarithmically slow time evolution, yet its full theoretical understanding remains elusive. We here introduce and study a generic transition process in complex systems, based on nonrenewal, aging waiting times. Each state n of the system follows a local clock initiated at t = 0. The random time tau between clock ticks follows the waiting time density psi (tau). Transitions between states occur only at local clock ticks and are hence triggered by the local forward waiting time, rather than by psi (tau). For power-law forms psi (tau) similar or equal to tau(-1-alpha) (0 < alpha < 1) we obtain a logarithmic time evolution of the state number < n(t)> similar or equal to log(t/t(0)), while for alpha > 2 the process becomes normal in the sense that < n(t)> similar or equal to t. In the intermediate range 1 < alpha < 2 we find the power-law growth < n(t)> similar or equal to t(alpha-1). Our model provides a universal description for transition dynamics between aging and nonaging states.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biophysics
Original languageEnglish
Article number208301
JournalPhysical Review Letters
Volume110
Issue number20
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes