Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion.

Research output: Contribution to journalArticle


PURPOSE: The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH(2)-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. RESULTS: Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. CONCLUSIONS: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology
Original languageEnglish
Pages (from-to)392-407
JournalMolecular Vision
Publication statusPublished - 2010
Publication categoryResearch

Related research output

Bodil Gesslein, 2010, Lund University. 134 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)

Related activities

Gustafsson, L. (Supervisory team member)
2006 Jan2008 Aug

Activity: Examination and supervisionSupervision of PhD students

View all (1)