Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography.

Research output: Contribution to journalArticle


OBJECTIVES: Our goal was to validate myocardium at risk on T2-weighted short tau inversion recovery (T2-STIR) cardiac magnetic resonance (CMR) over time, compared with that seen with perfusion single-photon emission computed tomography (SPECT) in patients with ST-segment elevation myocardial infarction, and to assess the amount of salvaged myocardium after 1 week. BACKGROUND: To assess reperfusion therapy, it is necessary to determine how much myocardium is salvaged by measuring the final infarct size in relation to the initial myocardium at risk of the left ventricle (LV). METHODS: Sixteen patients with first-time ST-segment elevation myocardial infarction received (99m)Tc tetrofosmin before primary percutaneous coronary intervention. SPECT was performed within 4 h and T2-STIR CMR within 1 day, 1 week, 6 weeks, and 6 months. At 1 week, patients were injected with a gadolinium-based contrast agent for quantification of infarct size. RESULTS: Myocardium at risk at occlusion on SPECT was 33 +/- 10% of the LV. Myocardium at risk on T2-STIR did not differ from SPECT, at day 1 (29 +/- 7%, p = 0.49) or week 1 (31 +/- 6%, p = 0.16) but declined at week 6 (10 +/- 12%, p = 0.0096 vs. 1 week) and month 6 (4 +/- 11%, p = 0.0013 vs. 1 week). There was a correlation between myocardium at risk demonstrated by T2-STIR at week 1 and myocardium at risk by SPECT (r(2) = 0.70, p < 0.001), and the difference between the methods on Bland-Altman analysis was not significant (-2.3 +/- 5.7%, p = 0.16). Both modalities identified myocardium at risk in the same perfusion territory and in concordance with angiography. Final infarct size was 8 +/- 7%, and salvage was 75 +/- 19% of myocardium at risk. CONCLUSIONS: This study demonstrates that T2-STIR performed up to 1 week after reperfusion can accurately determine myocardium at risk as it was before opening of the occluded artery. CMR can also quantify salvaged myocardium as myocardium at risk minus final infarct size.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Cardiac and Cardiovascular Systems
  • Cell and Molecular Biology
  • Respiratory Medicine and Allergy
Original languageEnglish
Pages (from-to)569-576
JournalJACC: Cardiovascular Imaging
Issue number5
Publication statusPublished - 2009
Publication categoryResearch

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Hematopoietic Stem Cell Laboratory (013022012), Department of Clinical Physiology (Lund) (013013000)

Total downloads

No data available

Related research output

Ubachs, J., 2011, Department of Clinical Physiology, Lund University. 87 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)