Nanowire photodetectors with embedded quantum heterostructures for infrared detection

Research output: Contribution to journalArticle


Nanowires offer remarkable opportunities for realizing new optoelectronic devices because of their unique fundamental properties. The ability to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on infrared photodetectors based on arrays of InP nanowires with embedded InAsP quantum discs. We demonstrate a strongly reduced dark current in the detector elements by compensating the unintentional n-doping in the nominal intrinsic region of the InP nanowires by in-situ doping with Zn, a crucial step towards realizing high-performance devices. The optimized array detectors show a broad spectral sensitivity at normal incidence for wavelengths from visible to far-infrared up to 20 μm, promoted by both interband and intersubband transitions. Optical simulations show that the unexpected normal incidence response at long wavelengths is due to non-zero longitudinal modes hosted by the nanowires.


External organisations
  • Sol Voltaics AB
  • Halmstad University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
Original languageEnglish
Pages (from-to) 209-212
JournalInfrared Physics and Technology
Publication statusPublished - 2019
Publication categoryResearch