Observation of the molten state of nano-particles with an atomic force microscope

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceeding

Abstract

An atomic force microscope was used to directly examine the physical state of nanometer-sized particles. The critical diameter of indium particles, where evidence of melting at room temperature was observed, was 7.8±1.2 nm. This conclusion is based on a method relying on the manipulation of particles in ambient air and at constant temperature. This method involves a simple set up that permits a combination of both manipulation and imaging of individual particles. To determine whether a particle is molten, three criteria are used: the merging of particles to form bigger spherical particles, a tip-induced shape change and the formation of nanofibres. All three criteria have been checked using other particle materials. The use of the atomic force microscope to determine whether a nanoparticle is molten, is however complicated by oxidation

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ)

  • Condensed Matter Physics

Keywords

  • 6.6 to 9 nm, 293 to 298 K, nanoparticles, In, molten state, physical state, atomic force microscopy, indium particles, nanometer sized particles, critical diameter, room temperature, spherical particles, oxidation, tip induced shape change
Original languageEnglish
Title of host publication7th International Conference on Nanometer-Scale Science and Technology and 21st European Conference on Surface Science
PublisherLund University
Number of pages2
Publication statusPublished - 2002
Publication categoryResearch
Peer-reviewedYes
EventProceedings of 7th International Conference on Nanometer-Scale Science and Technology and 21st European Conference on Surface Science (NANO-7/ECOSS-21) - Malmö, Sweden
Duration: 2002 Jun 242002 Jun 28

Conference

ConferenceProceedings of 7th International Conference on Nanometer-Scale Science and Technology and 21st European Conference on Surface Science (NANO-7/ECOSS-21)
Country/TerritorySweden
CityMalmö
Period2002/06/242002/06/28