On a theorem of Livsic

Research output: Contribution to journalArticle


The theory of symmetric operators has several deep applications to the function theory of certain reproducing kernel Hilbert spaces of analytic functions, as well as to the study of ordinary differential operators in mathematical physics. Examples of simple symmetric operators include multiplication operators on various spaces of analytic functions (model subspaces of Hardy spaces, de Branges-Rovnyak spaces, Herglotz spaces), Sturm-Liouville and Schrodinger differential operators, Toeplitz operators, and infinite Jacobi matrices. In this paper we develop a general representation theory of simple symmetric operators with equal deficiency indices, and obtain a collection of results which refine and extend classical works of Krein and Livsic. In particular, we provide an alternative proof of a theorem of Livsic which characterizes when two simple symmetric operators with equal deficiency indices are unitarily equivalent. Moreover, we provide a new, more easily computable formula for the Livsic characteristic function of a simple symmetric operator. (C) 2012 Elsevier Inc. All rights reserved.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Mathematics


  • Simple symmetric operators, Reproducing kernel Hilbert space, Livsic, characteristic function, de Branges-Rovnyak spaces
Original languageEnglish
Pages (from-to)999-1048
JournalJournal of Functional Analysis
Issue number4
Publication statusPublished - 2013
Publication categoryResearch