On the Feeding Zone of Planetesimal Formation by the Streaming Instability

Research output: Contribution to journalArticle

Abstract

The streaming instability is a promising mechanism to overcome the barriers in direct dust growth and lead to the formation of planetesimals. Most previous studies of the streaming instability, however, were focused on a local region of a protoplanetary disk with a limited simulation domain such that only one filamentary concentration of solids has been observed. The characteristic separation between filaments is therefore not known. To address this, we conduct the largest-scale simulations of the streaming instability to date, with computational domains up to 1.6 gas scale heights both horizontally and vertically. The large dynamical range allows the effect of vertical gas stratification to become prominent. We observe more frequent merging and splitting of filaments in simulation boxes of high vertical extent. We find multiple filamentary concentrations of solids with an average separation of about 0.2 local gas scale heights, much higher than the most unstable wavelength from linear stability analysis. This measures the characteristic separation of planetesimal forming events driven by the streaming instability and thus the initial feeding zone of planetesimals.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Astronomy, Astrophysics and Cosmology

Keywords

  • planets and satellites: formation, asteroids: general, minor planets, methods: numerical, hydrodynamics, instabilities, protoplanetary, disks
Original languageEnglish
Article number86
JournalAstrophysical Journal
Volume792
Issue number2
Publication statusPublished - 2014
Publication categoryResearch
Peer-reviewedYes