On the geometry of the Gauss map of conformal foliations by lines

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - On the geometry of the Gauss map of conformal foliations by lines

AU - Burel, J-M

AU - Gudmundsson, Sigmundur

PY - 2004

Y1 - 2004

N2 - Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.

AB - Let F be an oriented conformal foliation of connected, totally geodesic and 1-dimensional leaves in Rn+1. We prove that if n greater than or equal to 3 then the Gauss map phi: U --> S-n of F is a non-constant n-harmonic morphism if and only if it is a radial projection.

U2 - 10.1017/S0305004103007060

DO - 10.1017/S0305004103007060

M3 - Article

VL - 136

SP - 247

EP - 255

JO - Mathematical Proceedings of the Cambridge Philosophical Society

T2 - Mathematical Proceedings of the Cambridge Philosophical Society

JF - Mathematical Proceedings of the Cambridge Philosophical Society

SN - 1469-8064

ER -