Optimization of [18F]PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer

Research output: Contribution to journalArticle

Abstract

Background: Prostate-specific membrane antigen (PSMA) radiotracers such as [18F]PSMA-1007 used with positron emission tomography-computed tomography (PET-CT) is promising for initial staging and detection of recurrent disease in prostate cancer patients. The block-sequential regularization expectation maximization algorithm (BSREM) is a new PET reconstruction algorithm, which provides higher image contrast while also reducing noise. The aim of the present study was to evaluate the influence of different acquisition times and different noise-suppressing factors in BSREM (β values) in [18F]PSMA-1007 PET-CT regarding quantitative data as well as a visual image quality assessment. We included 35 patients referred for clinical [18F]PSMA-1007 PET-CT. Four megabecquerels per kilogramme were administered and imaging was performed after 120 min. Eighty-four image series per patient were created with combinations of acquisition times of 1–4 min/bed position and β values of 300–1400. The noise level in normal tissue and the contrast-to-noise ratio (CNR) of pathological uptakes versus the local background were calculated. Image quality was assessed by experienced nuclear medicine physicians. Results: The noise level in the liver, spleen, and muscle was higher for low β values and low acquisition times (written as activity time products (ATs = administered activity × acquisition time)) and was minimized at maximum AT (16 MBq/kg min) and maximum β (1400). There was only a small decrease above AT 10. The median CNR increased slowly with AT from approximately 6 to 12 and was substantially lower at AT 4 and higher at AT 14–16. At AT 4–6, many images were regarded as being of unacceptable quality. For AT 8, β values of 700–900 were considered of acceptable quality. Conclusions: An AT of 8 (for example as in our study, 4 MB/kg with an acquisition time of 2 min) with a β value of 700 performs well regarding noise level, CNR, and visual image quality assessment.

Details

Authors
Organisations
External organisations
  • Skåne University Hospital
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Medical Image Processing

Keywords

  • Block-sequential regularized expectation maximization, Image quality, PET-CT, PSMA, Q.Clear, [18F]PSMA-1007
Original languageEnglish
Article number31
JournalEJNMMI Physics
Volume7
Issue number1
Publication statusPublished - 2020
Publication categoryResearch
Peer-reviewedYes