Pebble drift and planetesimal formation in protoplanetary discs with embedded planets

Research output: Contribution to journalArticle


Nearly axisymmetric gaps and rings are commonly observed in protoplanetary discs. The leading theory regarding the origin of these patterns is that they are due to dust trapping at the edges of gas gaps induced by the gravitational torques from embedded planets. If the concentration of solids at the gap edges becomes high enough, it could potentially result in planetesimal formation by the streaming instability. We tested this hypothesis by performing global 1D simulations of dust evolution and planetesimal formation in a protoplanetary disc that is perturbed by multiple planets. We explore different combinations of particle sizes, disc parameters, and planetary masses, and we find that planetesimals form in all of these cases. We also compare the spatial distribution of pebbles from our simulations with protoplanetary disc observations. Planets larger than one pebble isolation mass catch drifting pebbles efficiently at the edge of their gas gaps, and depending on the efficiency of planetesimal formation at the gap edges, the protoplanetary disc transforms within a few 100 000 yr to either a transition disc with a large inner hole devoid of dust or to a disc with narrow bright rings. For simulations with planetary masses lower than the pebble isolation mass, the outcome is a disc with a series of weak ring patterns but there is no strong depletion between the rings. By lowering the pebble size artificially to a 100 micrometer-sized "silt", we find that regions between planets get depleted of their pebble mass on a longer time-scale of up to 0.5 million years. These simulations also produce fewer planetesimals than in the nominal model with millimeter-sized particles and always have at least two rings of pebbles that are still visible after 1 Myr.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Astronomy, Astrophysics and Cosmology


  • formation, Planet-disk interactions, Planets and satellites, Protoplanetary disks
Original languageEnglish
Article numberA110
JournalAstronomy and Astrophysics
Publication statusPublished - 2020
Publication categoryResearch