Pressure fluctuations of liquid-liquid slug flow in cross-junction square microchannels

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceeding


Microchannels are widely used for heat transfer enhancement. The pressure characteristics are one of the most important factors affecting the heat transfer performance, and the pressure regulation may also control the heat transfer precisely in turn. As a common flow pattern of two-phase flow, slug flow has obvious advantages for heat and mass transfer, like steady flow rate and large interface area etc. Due to the interface stress and the velocity difference between the continuous phase and the dispersed phase, pressure fluctuations occur in both the flowing direction and the cross section. In oil and natural gas industries, pressure fluctuations of slug flow can be used for the slug size and velocity measurement, and also to analyze the principle of slug generation. However, when it comes to micro scale, pressure fluctuations of slug flow in microchannels is difficult to measure, not only due to the pressure difference within a low pressure range (10 to 103 Pa), but also because of the small size, for which conventional pressure sensors cannot be utilized. In this paper, a numerical method is adopted for the liquid-liquid slug flow (butanol/water) pressure prediction in a cross-junction square microchannel. To begin with, the validation of the numerical method is carried out by comparing the slug size with experiments under the same working conditions. Then, both pressure fluctuations in the flow direction and in the cross section are investigated. With a transient flow model, pressure fluctuations in the cross section at different flowing time are observed. Finally, effects of the dispersed phase (butanol) injection velocity on pressure fluctuations are performed. This work can be used for further study of the slug generation in microchannels.


External organisations
  • Zhejiang University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Energy Engineering


  • Computational Fluid Dynamics (CFD), Cross-junction, Microchannels, Pressure fluctuation, Slug flow, Volume of Fluid (VOF)
Original languageEnglish
Title of host publicationProceeding: International Heat Transfer Conference 16
PublisherBegell House
Number of pages11
Publication statusPublished - 2018
Publication categoryResearch
Event16th International Heat Transfer Conference, IHTC 2018 - Beijing, China
Duration: 2018 Aug 102018 Aug 15

Publication series

NameInternational Heat Transfer Conference
ISSN (Print)2377-424X


Conference16th International Heat Transfer Conference, IHTC 2018