Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse.

Research output: Contribution to journalArticle

Abstract

Today, the gut microbiota is considered a key organ in host nutritional metabolism and recent data have suggested that alterations in gut microbiota contribute to the development of type 2 diabetes and obesity. Accordingly, a whole range of beneficial effects relating to inflammation and gut health have been observed following administration of probiotics to both humans and different animal models. The objective of this study was to evaluate the metabolic effects of an oral probiotic supplement, Lactobacillus plantarum DSM 15313, to high-fat diet (HFD) fed C57BL/6J mice, a model of human obesity and early diabetes. The mice were fed the experimental diets for 20 weeks, after which the HFD had induced an insulin-resistant state in both groups compared to the start of the study. The increase in body weight during the HFD feeding was higher in the probiotic group than in the control group, however, there were no significant differences in body fat content. Fasting plasma glucose levels were lower in the group fed the probiotic supplement, whereas insulin and lipids were not different. Caecal levels of short-chain fatty acids were not significantly different between the groups. An oral glucose tolerance test showed that the group fed probiotics had a significantly lower insulin release compared to the control group, although the rate of glucose clearance was not different. Taken together, these data indicate that L. plantarum DSM 15313 has anti-diabetic properties when fed together with an HFD.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Endocrinology and Diabetes

Keywords

  • Volatile: analysis * Lactobacillus plantarum: physiology * Obesity: prevention & control * Plasma: chemistry * Probiotics: administration & dosage, * Body Weight: physiology * Adipose Tissue: physiology * Cecum: chemistry * Diabetes Mellitus: prevention & control * Diet: methods * Fats: administration & dosage * Fatty Acids
Original languageEnglish
Pages (from-to)189-196
JournalBeneficial microbes
Volume1
Issue number2
Publication statusPublished - 2010
Publication categoryResearch
Peer-reviewedYes

Related projects

Patrick Adlercreutz, Irini Lazou Ahrén, Siv Ahrné, Said Alhamimi, Kristina E Andersson, Kristina E Andersson, Anna Månberger, Ulrika Axling, Ulrika Axling, Björn Bergenståhl, Karin Berger, Inger Björck, Camilla Bränning, Fredrik Bäckhed, Yoghatama Cindya Zanzer, Anders Danielsson, Birgitta Danielsson, Eva Degerman, Petr Dejmek, Estera Dey, Anestis Dougkas, Linda Ekström, Ann-Charlotte Eliasson, Christer Fahlgren, Peter Falck, Peter Falck, Tannaz Ghaffarzadegan, Yvonne Granfeldt, Carl Grey, Ulrika Gunnerud, Åsa Håkansson, Åsa Håkansson, Frida Hållenius, Frida Hållenius, Lina Haskå, Lina Haskå, Emilia Heimann, Per Hellstrand, Lovisa Heyman, Cecilia Holm Wallenberg, Ann-Kristin Holmén-Pålbrink, Olle Holst, Tina Immerstrand, Peter Immerzeel, Greta Jakobsdottir, Bengt Jeppsson, Elin Johansson, Maria Johansson, Maria Johansson, Margareta Johansson, Ulla Johansson, Helena Jones, E N Karlsson, Petia Kovatcheva-Datchary, Evelina Kulcinskaja, Mona Landin-Olsson, Caroline Linninge, Ali Marefati, Nittaya Marungruang, Göran Molin, Anne Nilsson, Einar Nilsson, Ulf Nilsson, Margareta Nyman, Eva Ohlson, Crister Olsson, Rickard Öste, Elin Östman, Lisbeth Persson, Stefan Persson, Merichel Plaza, Olena Prykhodko, Karl Radeborg, Marilyn Rayner, Liza Rosén, Margareta Sandahl, Jonna Sandberg, Malin Sjöö, Kerstin Skog, Peter Spégel, Henrik Stålbrand, Olov Sterner, Julia Svensson, Eden Tareke, Juscelino Tovar, Charlotta Turner, Björn Weström, Jie Xu & Yadong Zhong

2007/07/012018/01/31

Project: ResearchInterdisciplinary research

View all (1)