Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress

Research output: Contribution to journalArticle

Abstract

Background: Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity. Results: The genomic analysis of the LAB demonstrated varying genome sizes ranging from 1.5 to 2.2 mega-base pairs (Mbps) which points out a clear difference within the protein gene content, as well as specialized functions in the honeybee microbiota and their adaptation to their host. We demonstrate a clear variation between the secreted proteins of the symbiotic LAB when subjected to microbial stressors. We have identified that 10 of the 13 LAB produced extra-cellular proteins of known or unknown function in which some are arranged in interesting putative operons that may be involved in antimicrobial action, host interaction, or biofilm formation. The most common known extra-cellular proteins secreted were enzymes, DNA chaperones, S-layer proteins, bacteriocins, and lysozymes. A new bacteriocin may have been identified in one of the LAB symbionts while many proteins with unknown functions were produced which must be investigated further. Conclusions: The 13 LAB symbionts likely play different roles in their natural environment defending their niche and their host and participating in the honeybee's food production. These roles are partly played through producing extracellular proteins on exposure to microbial stressors widely found in natural occurring flowers. Many of these secreted proteins may have a putative antimicrobial function. In the future, understanding these processes in this complicated environment may lead to novel applications of honey crop LAB proteins.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Microbiology in the medical area

Keywords

  • Lactic acid bacteria, Symbionts, Microbial stress, Proteomics, Honeybee
Original languageEnglish
Article number235
JournalBMC Microbiology
Volume13
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes

Total downloads

No data available

Related research output

Butler, É., 2015, Division of Medical Microbiology, Lund University. 96 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)