Proteoglycans from the swarm rat chondrosarcoma. Structure of the aggregates extracted with associative and dissociative solvents as revealed by electron microscopy

Research output: Contribution to journalArticle

Abstract

Proteoglycan aggregates were extracted from Swarm rat chondrosarcoma tissue in the native state and compared with proteoglycan aggregates isolated dissociatively with 4 M guanidine HCl. Purified aggregates were examined with a variety of electron microscopic techniques. In some cases they showed a structure of the central filament identical to that of the link-stabilized central filament observed in earlier experiments where the separated constituents were allowed to reconstitute (Morgelin, M., Paulsson, M., Hardingham, T. E., Heinegard, D., and Engel, J. (1988) Biochem. J. 253, 175-185). The tight packing of proteoglycan monomers along the hyaluronate with a minimum distance of 12 nm between adjacent E1 strands also could thus be confirmed for never dissociated aggregates. The results therefore show that the organization of proteoglycan aggregates assembled in vitro from the participating molecules is representative for conditions in situ. An additional structural type of central filament was observed in the preparations. This contained long stretches of free hyaluronate interspaced by short stretches of central filament with condensed arrays of link protein-proteoglycan. Chemical cross-linking in combination with low shear electron microscopical techniques showed that this discontinuous central filament structure is not an artifact of specimen preparation. The addition of suprastoichiometric amounts of exogenous link protein did not affect the central filament structure with the low packing density. Densely and loosely packed types of central filament were isolated in varying relative amounts with different associative and dissociative solvents.

Details

Authors
  • Matthias Mörgelin
  • Jürgen Engel
  • Dick Heinegård
  • Mats Paulsson
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Infectious Medicine
  • Rheumatology and Autoimmunity
Original languageEnglish
Pages (from-to)14275-14284
JournalJournal of Biological Chemistry
Volume267
Issue number20
Publication statusPublished - 1992
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Division of Infection Medicine (BMC) (013024020), Connective Tissue Biology (013230151)