Quantitative SO2 Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence

Research output: Contribution to journalArticle

Abstract

Spectrally resolved ultraviolet (UV) absorption cross sections of SO2 in combustion environments at temperatures from 1120 to 1950 K were measured for the first time in well-controlled conditions through applying broad band UV absorption spectroscopy in specially designed one-dimensional laminar flat flames. The temperature was observed to have a significant effect on the absorption cross-section profiles at wavelength shorter than 260 nm, while at the longer wavelength side, the absorption cross-section profiles have much less dependence on temperature. The absorption cross section at 277.8 nm with a value of 0.68 × 10-18 cm2/molecule was suggested for the evaluation of the SO2 concentration because of the weak dependence on temperature. To make spatially resolved measurements, laser-induced fluorescence (LIF) of SO2 excited by a 266 nm laser was investigated. Spectrally resolved LIF signal was analyzed at different temperatures. The LIF signal showed strong dependence on temperature, which can potentially be used for temperature measurements. At elevated temperatures, spatially resolved LIF SO2 detection up to a few ppm sensitivity was achieved. Combining UV broad band absorption spectroscopy and LIF, highly sensitive and spatially resolved quantitative measurements of SO2 in the combustion environment can be achieved.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
Original languageEnglish
Pages (from-to)10849-10855
Number of pages7
JournalAnalytical Chemistry
Volume91
Issue number16
Publication statusPublished - 2019 Jul 31
Publication categoryResearch
Peer-reviewedYes