Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing

Research output: Contribution to journalArticle


Uncertainty in pre-industrial natural aerosol emissions is a major component of the overall uncertainty in the radiative forcing of climate. Improved characterisation of natural emissions and their radiative effects can therefore increase the accuracy of global climate model projections. Here we show that revised assumptions about pre-industrial fire activity result in significantly increased aerosol concentrations in the pre-industrial atmosphere. Revised global model simulations predict a 35% reduction in the calculated global mean cloud albedo forcing over the Industrial Era (1750–2000 CE) compared to estimates using emissions data from the Sixth Coupled Model Intercomparison Project. An estimated upper limit to pre-industrial fire emissions results in a much greater (91%) reduction in forcing. When compared to 26 other uncertain parameters or inputs in our model, pre-industrial fire emissions are by far the single largest source of uncertainty in pre-industrial aerosol concentrations, and hence in our understanding of the magnitude of the historical radiative forcing due to anthropogenic aerosol emissions.


  • D. S. Hamilton
  • S. Hantson
  • C. E. Scott
  • J. O. Kaplan
  • K. J. Pringle
  • L. P. Nieradzik
  • A. Rap
  • G. A. Folberth
  • D. V. Spracklen
  • K. S. Carslaw
External organisations
  • University of Leeds
  • Cornell University
  • University of California, Irvine
  • University of Oxford
  • Max Planck Institute for the Science of Human History
  • CSIRO Oceans and Atmosphere, Canberra
  • Met Office
  • Karlsruhe Institute of Technology
  • ARVE Research SARL
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Meteorology and Atmospheric Sciences
  • Climate Research
Original languageEnglish
Article number3182
JournalNature Communications
Issue number1
Publication statusPublished - 2018 Dec 1
Publication categoryResearch