Release of large polycyclic aromatic hydrocarbons and fullerenes by cosmic rays from interstellar dust Swift heavy ion irradiations of interstellar carbonaceous dust analogue: Release of large polycyclic aromatic hydrocarbons and fullerenes by cosmic rays from interstellar dust Swift heavy ion irradiations of interstellar carbonaceous dust analogue

Research output: Contribution to journalArticle

Abstract

Context. Top-down chemistry is believed to be responsible for the formation of the large molecular compounds such as the polycyclic
aromatic hydrocarbon-like molecules and the fullerenes observed in the interstellar medium. The release of these large molecules from
the parent grains remains an important issue to be investigated.
Aims. Cosmic rays irradiate the dust grains during their journey in the interstellar medium. In this study we probe to what extent electronic
sputtering and/or desorption processes induced by high-energy ion projectiles contribute to the creation of the large molecular
component in space.
Methods. Carbonaceous dust analogues were produced in an ethylene flame. The resulting soot nanoparticles generated under welldefined
conditions were irradiated by swift heavy ions, and mass spectra of the ionic and neutral molecular fragments emitted shortly
after the impact were monitored.
Results. Large molecular fragments were detected, including neutral and ionic polycyclic aromatic hydrocarbons containing up to several
tens of carbon atoms, as well as ionic fullerenes. Although the absolute efficiencies were not obtained, these experiments provide
a proof of principle of a top-down scenario involving interaction processes of interstellar dust with high-energy projectiles yielding
large molecular compounds observed in space.

Details

Authors
  • T. Pino
  • M Chabot
  • K. Béroff
  • M. Godard
  • F. Fernandez-Villoria
  • K. C. Le
  • M. Herder
  • A. Wucher
  • M. Bender
  • D. Severin
  • C. Trautmann
  • E. Dartois
External organisations
  • University of Paris-Saclay
  • University of Duisburg-Essen
  • GSI Helmholtz Centre for Heavy Ion Research
  • Technical University of Darmstadt
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
  • Astronomy, Astrophysics and Cosmology

Keywords

  • astrochemistry – cosmic rays – dust, extinction – ISM: molecules
Original languageEnglish
Article numberA134
JournalAstronomy & Astrophysics
Volume623
Issue numberA134
Publication statusPublished - 2019 Feb 3
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes