Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects

Research output: Contribution to journalArticle


Orb weaver spiders use exceptionally complex spinning processes to transform soluble silk proteins into solid fibers with specific functions and mechanical properties. In this study, to understand the nature of this transformation we investigated the structural changes of the soluble silk proteins from the major ampullate gland (web radial threads and spider safety line); flagelliform gland (web sticky spiral threads); minor ampullate gland (web auxiliary spiral threads); and cylindrical gland (egg sac silk). Using circular dichroism, we elucidated (i) the different structures and folds for the various silk proteins; (ii) irreversible temperature-induced transitions of the various silk structures toward β-sheet-rich final states; and (iii) the role of protein concentration in silk storage and transport. We discuss the implication of these results in the spinning process and a possible mechanism for temperature-induced β-sheet formation.


External organisations
  • University of Oxford
  • Aarhus University
  • East Carolina University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology
Original languageEnglish
Pages (from-to)2105-2115
Number of pages11
Issue number6
Publication statusPublished - 2004 Nov 1
Publication categoryResearch
Externally publishedYes