Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent

Research output: Contribution to journalArticle

Abstract

Recent investigations have shown that deep eutectic solvents provide a suitable environment for self-organisation of biomolecules, in particular phospholipids and proteins. However, the solvation of complex lyophilic moieties by deep eutectic solvents still remains unclear. Here we explore the behaviour of zwitterionic surfactants in choline chloride:glycerol eutectic mixture. Dodecyl-2-(trimethylammonio)ethylphosphate and N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (alkyl = dodecyl, tetradecyl) surfactants were investigated by means of surface tension, X-ray reflectivity and small-angle neutron scattering. These surfactants were found to remain surface active and form globular micelles in deep eutectic solvents. Still, the surface behaviour of these species was found to differ depending on the headgroup and tail structure. The morphology of the micelles also slightly varies between surfactants, demonstrating differences in the packing of individual monomers. The characteristics of mixtures of the dodecyl surfactants is also reported, showing a deviation from ideal mixing associated with attractive interactions between sulfobetaine and phosphocholine headgroups. Such non-ideality results in variation of the surface behaviour and self-assembly of these surfactant mixtures. The results presented here will potentially lead to the development of new alternatives for drug-delivery, protein solubilisation and biosensing through a better fundamental understanding of the behaviour of zwitterionic surfactants in deep eutectic solvents.

Details

Authors
Organisations
External organisations
  • University of Bath
  • European Spallation Source ESS AB
  • Diamond Light Source
  • ISIS Neutron and Muon Source
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Pages (from-to)5525-5536
Number of pages12
JournalSoft Matter
Volume14
Issue number26
Publication statusPublished - 2018 Jan 1
Publication categoryResearch
Peer-reviewedYes