Simultaneous Visualization of Water and Hydrogen Peroxide Vapor Using Two-Photon Laser-Induced Fluorescence and Photofragmentation Laser-Induced Fluorescence

Research output: Contribution to journalArticle

Bibtex

@article{e881f0829d334e759295a6e39617f33d,
title = "Simultaneous Visualization of Water and Hydrogen Peroxide Vapor Using Two-Photon Laser-Induced Fluorescence and Photofragmentation Laser-Induced Fluorescence",
abstract = "A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least similar to 24 000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5{\%}, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries.",
keywords = "H2O2, Hydrogen peroxide, H2O, Water, Imaging, Photofragmentation, LIF, Laser-induced fluorescence",
author = "Kajsa Larsson and Olof Johansson and Marcus Ald{\'e}n and Joakim Bood",
year = "2014",
doi = "10.1366/14-07500",
language = "English",
volume = "68",
pages = "1333--1341",
journal = "Applied Spectroscopy",
issn = "1943-3530",
publisher = "Society for Applied Spectroscopy",
number = "12",

}