Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed

Research output: Contribution to journalArticle

Abstract

A key unanswered question in smooth muscle biology is whether phosphorylation of the myosin regulatory light chain (RLC) is sufficient for regulation of contraction, or if thin-filament-based regulatory systems also contribute to this process. To address this issue, the endogenous RLC was extracted from single smooth muscle cells and replaced with either a thiophosphorylated RLC or a mutant RLC (T18A/S19A) that cannot be phosphorylated by myosin light chain kinase. The actin-binding protein calponin was also extracted. Following photolysis of caged ATP, cells without calponin that contained a nonphosphorylatable RLC shortened at 30% of the velocity and produced 65% of the isometric force of cells reconstituted with the thiophosphorylated RLC. The contraction of cells reconstituted with nonphosphorylatable RLC was, however, specifically suppressed in cells that contained calponin. These results indicate that calponin is required to maintain cells in a relaxed state, and that in the absence of this inhibition, dephosphorylated cross-bridges can slowly cycle and generate force. These findings thus provide a possible framework for understanding the development of latch contraction, a widely studied but poorly understood feature of smooth muscle.

Details

Authors
  • Ulf Malmqvist
  • K M Trybus
  • S Yagi
  • J Carmichael
  • F S Fay
External organisations
  • External Organization - Unknown
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Pharmacology and Toxicology
  • Medicinal Chemistry
Original languageEnglish
Pages (from-to)7655-7660
JournalProceedings of the National Academy of Sciences
Volume94
Issue number14
Publication statusPublished - 1997
Publication categoryResearch
Peer-reviewedYes
Externally publishedYes