Soliton self-compression and spectral broadening of 1 μm femtosecond pulses in single-domain KTiOPO4

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceeding

Abstract

Efficient, diode-pumped high energy femtosecond laser systems around 1 μm based on Yb-gain media are readily commercially available. However, owing to the gain bandwidth limitations, the pulses generated in such lasers are substantially longer than the ones generated in Ti:Sapphire systems. A simple, energy-scalable pulse self-compression scheme for the pulses around 1 μm thus would be of great interest for many applications, including time-resolved pump-probe spectroscopy, high-harmonics generation, etc. The self-phase modulation during nonlinear propagation in filaments in gasses is often employed for pulse self-compression [1,2]. Such schemes typically require rather bulky setups and careful control of group velocity dispersion. Some years ago it has been shown theoretically that Raman-active molecules in gaseous form could be used for mid-infrared pulse compression [3].

Details

Authors
Organisations
External organisations
  • KTH Royal Institute of Technology
  • Vilnius University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728104690
Publication statusPublished - 2019
Publication categoryResearch
Peer-reviewedYes
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 2019 Jun 232019 Jun 27

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
CountryGermany
CityMunich
Period2019/06/232019/06/27