Sorption behavior of the MgH2-Mg2FeH6 hydride storage system synthesized by mechanical milling followed by sintering

Research output: Contribution to journalArticle

Abstract

The hydrogen sorption behavior of the Mg2FeH6-MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6-MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 degrees C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6-MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6-MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Details

Authors
  • Julian Puszkiel
  • Fabiana Gennari
  • Pierre Arneodo Larochette
  • Fahim Karimi
  • Claudio Pistidda
  • Rapee Gosalawit-Utke
  • Julian Jepsen
  • Torben R. Jensen
  • Carsten Gundlach
  • Jose Bellosta von Colbe
  • Thomas Klassen
  • Martin Dornheim
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Sciences
  • Natural Sciences

Keywords

  • Hydride mixture, Magnesium hydride, Complex hydride, Reaction path, Desorption kinetics
Original languageEnglish
Pages (from-to)14618-14630
JournalInternational Journal of Hydrogen Energy
Volume38
Issue number34
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes