Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes.

Research output: Contribution to journalArticle


The far-infrared absorption spectra have been recorded for hydrogen-bonded complexes of water with ethanol embedded in cryogenic neon matrices at 2.8 K. The partial isotopic H/D-substitution of the ethanol subunit enabled by a dual inlet deposition procedure enables the observation and unambiguous assignment of the intermolecular high-frequency out-of-plane and the low-frequency in-plane donor OH librational modes for two different conformations of the mixed binary ethanol/water complex. The resolved donor OH librational bands confirm directly previous experimental evidence that ethanol acts as the O⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bond interaction evidenced by a significantly blue-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformational energy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins.


  • J Andersen
  • Jimmy Heimdal
  • R Wugt Larsen
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Theoretical Chemistry
Original languageEnglish
Article number224315
JournalJournal of Chemical Physics
Issue number22
Publication statusPublished - 2015
Publication categoryResearch

Total downloads

No data available