State Estimation for Distributed and Hybrid Systems

Research output: ThesisDoctoral Thesis (compilation)

Abstract

This thesis deals with two aspects of recursive state estimation: distributed estimation and estimation for hybrid systems.
In the first part, an approximate distributed Kalman filter is developed. Nodes update their state estimates by linearly combining local measurements and estimates from their neighbors. This scheme allows nodes to save energy, thus prolonging their lifetime, compared to centralized information processing. The algorithm is evaluated experimentally as part of an ultrasound based positioning system.
The first part also contains an example of a sensor-actuator network, where a mobile robot navigates using both local sensors and information from a sensor network. This system was implemented using a component-based framework.
The second part develops, a recursive joint maximum a posteriori state estimation scheme for Markov jump linear systems. The estimation problem is reformulated as dynamic programming and then approximated using so called relaxed dynamic programming. This allows the otherwise exponential complexity to be kept at manageable levels.
Approximate dynamic programming is also used to develop a sensor scheduling algorithm for linear systems. The algorithm produces an offline schedule that when used together with a Kalman filter minimizes the estimation error covariance.

Details

Authors
  • Peter Alriksson
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Control Engineering

Keywords

  • Joint Maximum a Posteriori Estimation, Sensor Networks, Distributed State Estimation, Networked Embedded Systems, Markov Jump Linear Systems, Sensor Scheduling
Original languageEnglish
QualificationDoctor
Awarding Institution
Supervisors/Assistant supervisor
Award date2008 Sep 26
Publisher
  • Department of Automatic Control, Lund Institute of Technology, Lund University
Publication statusPublished - 2008
Publication categoryResearch

Bibliographic note

Defence details Date: 2008-09-26 Time: 10:15 Place: Room M:B, M-building, Ole Römers väg 1, Faculty of Engineering, Lund University External reviewer(s) Name: D'Andrea, Raffaello Title: Professor Affiliation: ETH, Zürich, Switzerland ---

Total downloads

No data available