Streptococcal M1 protein triggers farnesyltransferase-dependent formation of CXC chemokines in alveolar macrophages and neutrophil infiltration in the lung.

Research output: Contribution to journalArticle


M1 serotype of Streptococcus pyogenes plays an important role in streptococcal toxic shock syndrome. Simvastatin, a HMG-CoA reductase inhibitor, has been shown to inhibit streptococcal M1 protein-induced acute lung damage although downstream mechanisms remain elusive. Protein isoprenylation, such as farnesylation and geranylgeranylation, has been suggested to regulate anti-inflammatory effects exerted by statins. Herein, we examined the effect of a farnesyltransferase inhibitor (FTI-277) on M1 protein-triggered lung inflammation. Male C57BL/6 mice were treated with FTI-277 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. We found that administration of FTI-277 markedly decreased M1 protein-induced accumulation of neutrophils, edema formation and tissue damage in the lung. Notably, inhibition of farnesyltransferase abolished M1 protein-evoked production of CXC chemokines in the lung and gene expression of CXC chemokines in alveolar macrophages. Moreover, FTI-277 completely inhibited chemokine-induced neutrophil migration in vitro. However, farnesyltransferase inhibition had no effect on M1 protein-induced expression of Mac-1 on neutrophils. Our findings suggest that farnesyltransferase is a potent regulator of CXC chemokine formation in alveolar macrophages and that inhibition of farnesyltransferase not only reduces neutrophil recruitment but also attenuates acute lung injury provoked by streptococcal M1 protein. We conclude that farnesyltransferase activity is a potential target in order to attenuate acute lung damage in streptococcal infections.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Infectious Medicine
  • Surgery
Original languageEnglish
Pages (from-to)3952-3959
JournalInfection and Immunity
Issue number11
Publication statusPublished - 2012
Publication categoryResearch

Total downloads

No data available

Related research output

Songen Zhang, 2012, Surgery Research Unit, Clinical Science, Malmö. 72 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)