Structural response of human serum albumin to oxidation: Biological buffer to local formation of hypochlorite
Research output: Contribution to journal › Article
Abstract
The most abundant plasma protein, human serum albumin (HSA), plays a key part in the body's antioxidant defense against reactive species. This study was aimed at correlating oxidant-induced chemical and structural effects on HSA. Despite the chemical modification induced by the oxidant hypochlorite, the native shape is preserved up to oxidant/HSA molar ratio <80, above which a structural transition occurs in the critical range 80-120. This conformational variation involves the drifting of one of the end-domains from the rest of the protein and corresponds to the loss of one-third of the α-helix and a net increase of the protein negative charge. The transition is highly reproducible suggesting that it represents a well-defined structural response typical of this multidomain protein. The ability to tolerate high levels of chemical modification in a folded or only partially unfolded state, as well as the stability to aggregation, provides albumin with optimal features as a biological buffer for the local formation of oxidants. (Graph Presented).
Details
Authors | |
---|---|
Organisations | |
External organisations |
|
Research areas and keywords | Subject classification (UKÄ) – MANDATORY
|
Original language | English |
---|---|
Pages (from-to) | 12261-12271 |
Number of pages | 11 |
Journal | Journal of Physical Chemistry B |
Volume | 120 |
Issue number | 40 |
Publication status | Published - 2016 Nov 10 |
Publication category | Research |
Peer-reviewed | Yes |