Substituent Effects on in Vitro Antioxidizing Properties, Stability, and Solubility in Flavonoids

Research output: Contribution to journalReview article

Abstract

Antioxidants are widely used by humans, both as dietary supplements and as additives to different types of products. The desired properties of an antioxidant often include a balance between the antioxidizing capacity, stability, and solubility. This review focuses on flavonoids, which are naturally occurring antioxidants, and different common substituent groups on flavonoids and how these affect the properties of the molecules in vitro. Hydroxyl groups on flavonoids are both important for the antioxidizing capacity and key points for further modification resulting in O-methylation, -glycosylation, -sulfation, or -acylation. The effects of O-glycosylation and acylation are discussed as these types of substitutions have been most explored in vitro concerning antioxidizing properties as well as stability and solubility. Possibilities to control the properties by enzymatic acylation and glycosylation are also reviewed, showing that depending on the choice of enzyme and substrate, regioselective results can be obtained, introducing possibilities for more targeted production of antioxidants with predesigned properties.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Agricultural Science, Forestry and Fisheries

Keywords

  • antioxidant, solubility, stability, enzymes, flavonoid, acylation, glycosylation, methylation, sulfation
Original languageEnglish
Pages (from-to)3321-3333
JournalJournal of Agricultural and Food Chemistry
Volume62
Issue number15
Publication statusPublished - 2014
Publication categoryResearch
Peer-reviewedYes

Related projects

Patrick Adlercreutz, Irini Lazou Ahrén, Siv Ahrné, Said Alhamimi, Kristina E Andersson, Kristina E Andersson, Anna Månberger, Ulrika Axling, Ulrika Axling, Björn Bergenståhl, Karin Berger, Inger Björck, Camilla Bränning, Fredrik Bäckhed, Yoghatama Cindya Zanzer, Anders Danielsson, Birgitta Danielsson, Eva Degerman, Petr Dejmek, Estera Dey, Anestis Dougkas, Linda Ekström, Ann-Charlotte Eliasson, Christer Fahlgren, Peter Falck, Peter Falck, Tannaz Ghaffarzadegan, Yvonne Granfeldt, Carl Grey, Ulrika Gunnerud, Åsa Håkansson, Åsa Håkansson, Frida Hållenius, Frida Hållenius, Lina Haskå, Lina Haskå, Emilia Heimann, Per Hellstrand, Lovisa Heyman, Cecilia Holm Wallenberg, Ann-Kristin Holmén-Pålbrink, Olle Holst, Tina Immerstrand, Peter Immerzeel, Greta Jakobsdottir, Bengt Jeppsson, Elin Johansson, Maria Johansson, Maria Johansson, Margareta Johansson, Ulla Johansson, Helena Jones, E N Karlsson, Petia Kovatcheva-Datchary, Evelina Kulcinskaja, Mona Landin-Olsson, Caroline Linninge, Ali Marefati, Nittaya Marungruang, Göran Molin, Anne Nilsson, Einar Nilsson, Ulf Nilsson, Margareta Nyman, Eva Ohlson, Crister Olsson, Rickard Öste, Elin Östman, Lisbeth Persson, Stefan Persson, Merichel Plaza, Olena Prykhodko, Karl Radeborg, Marilyn Rayner, Liza Rosén, Margareta Sandahl, Jonna Sandberg, Malin Sjöö, Kerstin Skog, Peter Spégel, Henrik Stålbrand, Olov Sterner, Julia Svensson, Eden Tareke, Juscelino Tovar, Charlotta Turner, Björn Weström, Jie Xu & Yadong Zhong

2007/07/012018/01/31

Project: Research

View all (1)