The contact angle of nanofluids as thermophysical property

Research output: Contribution to journalArticle

Standard

The contact angle of nanofluids as thermophysical property. / Hernaiz, M.; Alonso, V.; Estellé, P.; Wu, Z.; Sundén, B.; Doretti, L.; Mancin, S.; Çobanoğlu, N.; Karadeniz, Z. H.; Garmendia, N.; Lasheras-Zubiate, M.; Hernández López, L.; Mondragón, R.; Martínez-Cuenca, R.; Barison, S.; Kujawska, A.; Turgut, A.; Amigo, A.; Huminic, G.; Huminic, A.; Kalus, M. R.; Schroth, K. G.; Buschmann, M. H.

In: Journal of Colloid and Interface Science, Vol. 547, 2019, p. 393-406.

Research output: Contribution to journalArticle

Harvard

Hernaiz, M, Alonso, V, Estellé, P, Wu, Z, Sundén, B, Doretti, L, Mancin, S, Çobanoğlu, N, Karadeniz, ZH, Garmendia, N, Lasheras-Zubiate, M, Hernández López, L, Mondragón, R, Martínez-Cuenca, R, Barison, S, Kujawska, A, Turgut, A, Amigo, A, Huminic, G, Huminic, A, Kalus, MR, Schroth, KG & Buschmann, MH 2019, 'The contact angle of nanofluids as thermophysical property', Journal of Colloid and Interface Science, vol. 547, pp. 393-406. https://doi.org/10.1016/j.jcis.2019.04.007

APA

CBE

Hernaiz M, Alonso V, Estellé P, Wu Z, Sundén B, Doretti L, Mancin S, Çobanoğlu N, Karadeniz ZH, Garmendia N, Lasheras-Zubiate M, Hernández López L, Mondragón R, Martínez-Cuenca R, Barison S, Kujawska A, Turgut A, Amigo A, Huminic G, Huminic A, Kalus MR, Schroth KG, Buschmann MH. 2019. The contact angle of nanofluids as thermophysical property. Journal of Colloid and Interface Science. 547:393-406. https://doi.org/10.1016/j.jcis.2019.04.007

MLA

Vancouver

Author

Hernaiz, M. ; Alonso, V. ; Estellé, P. ; Wu, Z. ; Sundén, B. ; Doretti, L. ; Mancin, S. ; Çobanoğlu, N. ; Karadeniz, Z. H. ; Garmendia, N. ; Lasheras-Zubiate, M. ; Hernández López, L. ; Mondragón, R. ; Martínez-Cuenca, R. ; Barison, S. ; Kujawska, A. ; Turgut, A. ; Amigo, A. ; Huminic, G. ; Huminic, A. ; Kalus, M. R. ; Schroth, K. G. ; Buschmann, M. H. / The contact angle of nanofluids as thermophysical property. In: Journal of Colloid and Interface Science. 2019 ; Vol. 547. pp. 393-406.

RIS

TY - JOUR

T1 - The contact angle of nanofluids as thermophysical property

AU - Hernaiz, M.

AU - Alonso, V.

AU - Estellé, P.

AU - Wu, Z.

AU - Sundén, B.

AU - Doretti, L.

AU - Mancin, S.

AU - Çobanoğlu, N.

AU - Karadeniz, Z. H.

AU - Garmendia, N.

AU - Lasheras-Zubiate, M.

AU - Hernández López, L.

AU - Mondragón, R.

AU - Martínez-Cuenca, R.

AU - Barison, S.

AU - Kujawska, A.

AU - Turgut, A.

AU - Amigo, A.

AU - Huminic, G.

AU - Huminic, A.

AU - Kalus, M. R.

AU - Schroth, K. G.

AU - Buschmann, M. H.

PY - 2019

Y1 - 2019

N2 - Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids – suspensions containing nanometre-sized particles – can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids.

AB - Droplet volume and temperature affect contact angle significantly. Phase change heat transfer processes of nanofluids – suspensions containing nanometre-sized particles – can only be modelled properly by understanding these effects. The approach proposed here considers the limiting contact angle of a droplet asymptotically approaching zero-volume as a thermophysical property to characterise nanofluids positioned on a certain substrate under a certain atmosphere. Graphene oxide, alumina, and gold nanoparticles are suspended in deionised water. Within the framework of a round robin test carried out by nine independent European institutes the contact angle of these suspensions on a stainless steel solid substrate is measured with high accuracy. No dependence of nanofluids contact angle of sessile droplets on the measurement device is found. However, the measurements reveal clear differences of the contact angle of nanofluids compared to the pure base fluid. Physically founded correlations of the contact angle in dependency of droplet temperature and volume are obtained from the data. Extrapolating these functions to zero droplet volume delivers the searched limiting contact angle depending only on the temperature. It is for the first time, that this specific parameter, is understood as a characteristic material property of nanofluid droplets placed on a certain substrate under a certain atmosphere. Together with the surface tension it provides the foundation of proper modelling phase change heat transfer processes of nanofluids.

KW - Contact angle

KW - Experimental strategy

KW - Influence of temperature

KW - Influence of volume

KW - Nanofluids

KW - Round robin test

U2 - 10.1016/j.jcis.2019.04.007

DO - 10.1016/j.jcis.2019.04.007

M3 - Article

VL - 547

SP - 393

EP - 406

JO - Journal of Colloid and Interface Science

T2 - Journal of Colloid and Interface Science

JF - Journal of Colloid and Interface Science

SN - 0021-9797

ER -