The Dead Sea Future Elevation

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - The Dead Sea Future Elevation

AU - Bashitialshaer, Raed

AU - Persson, Kenneth M

PY - 2011

Y1 - 2011

N2 - In this paper water and salt mass balances for the Dead Sea were modeled. Precipitation, evaporation, river discharges, ground water flows, input/output from potash companies and salt production, and brine discharge were included in the models. The mixing time in the Dead Sea was modeled using a single-layer (well-mixed) a two-layer (stratified) system. Using the single-layer approach the water level was predicted to change from 411 m below mean sea level (bmsl) (in 1997) to 391 m and 479 m bmsl (in 2097) based on water mass balances including and excluding brine discharge, respectively, and to reach 402 m and 444 m for the two cases based on a salt mass balance. In the two-layer approach the water level after 100 years was predicted to change from 411 m bmsl (1997) to 397 m and 488 m for a water mass balance including and excluding brine discharge, respectively, and to reach 387 m and 425 m for the two cases using a salt mass balance. The water mixing time using the single-layer description increased from 58 to 116 years when excluding brine discharge. Using the two-layer approach the exchange or mixing time increased in both layers, when adding brine discharge to the system, from 1.2 to 1.7 years and 11 to 15.3 years in the upper and lower layers, respectively. Good agreement was found between the models and historical data.

AB - In this paper water and salt mass balances for the Dead Sea were modeled. Precipitation, evaporation, river discharges, ground water flows, input/output from potash companies and salt production, and brine discharge were included in the models. The mixing time in the Dead Sea was modeled using a single-layer (well-mixed) a two-layer (stratified) system. Using the single-layer approach the water level was predicted to change from 411 m below mean sea level (bmsl) (in 1997) to 391 m and 479 m bmsl (in 2097) based on water mass balances including and excluding brine discharge, respectively, and to reach 402 m and 444 m for the two cases based on a salt mass balance. In the two-layer approach the water level after 100 years was predicted to change from 411 m bmsl (1997) to 397 m and 488 m for a water mass balance including and excluding brine discharge, respectively, and to reach 387 m and 425 m for the two cases using a salt mass balance. The water mixing time using the single-layer description increased from 58 to 116 years when excluding brine discharge. Using the two-layer approach the exchange or mixing time increased in both layers, when adding brine discharge to the system, from 1.2 to 1.7 years and 11 to 15.3 years in the upper and lower layers, respectively. Good agreement was found between the models and historical data.

KW - Water-Salt balance

KW - Red Sea-Dead Sea Canal (RSDSC)

KW - Single-Layer and Two-Layer system

KW - Mixing time

M3 - Article

VL - 2

SP - 67

JO - International Journal of Sustainable Water and Environmental Systems - IASKS

JF - International Journal of Sustainable Water and Environmental Systems - IASKS

SN - 1923-7545

IS - 2

M1 - 10

ER -