The epsilon isoform of protein kinase C is involved in regulation of the LTD(4)-induced calcium signal in human intestinal epithelial cells

Research output: Contribution to journalArticle

Abstract

We investigated the potential roles of specific isoforms of protein kinase C (PKC) in the regulation of leukotriene D(4)-induced Ca(2+) signaling in the intestinal epithelial cell line Int 407. RT-PCR and Western blot analysis revealed that these cells express the PKC isoforms alpha, betaII, delta, epsilon, zeta, and mu, but not betaI, gamma, eta, or theta;. The inflammatory mediator leukotriene D(4) (LTD(4)) caused the TPA-sensitive PKC isoforms alpha, delta, and epsilon, but not betaII, to rapidly translocate to a membrane-enriched fraction. The PKC inhibitor GF109203X at 30 microM but not 2 microM significantly impaired the LTD(4)-induced Ca(2+) signal, indicating that the response involves a novel PKC isoform, such as delta or epsilon, but not alpha. LTD(4)-induced Ca(2+) signaling was significantly suppressed in cells pretreated with TPA for 15 min and was abolished when the pretreatment was prolonged to 2 h. Immunoblot analysis revealed that the reduction in the LTD(4)-induced calcium signal coincided with a reduction in the cellular content of PKCepsilon and, to a limited extent, PKCdelta. LTD(4)-induced Ca(2+) signaling was also markedly suppressed by microinjection of antibodies against PKCepsilon but not PKCdelta. These data suggest that PKCepsilon plays a unique role in regulation of the LTD(4)-dependent Ca(2+) signal in intestinal epithelial cells.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Cancer and Oncology

Keywords

  • leukotriene D4, protein kinase C, Ca2+ signal, intestinal epithelial cells
Original languageEnglish
Pages (from-to)95-103
JournalExperimental Cell Research
Volume262
Issue number2
Publication statusPublished - 2001
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Tumour Cell Biology (013017530), Cell Pathology (013031400), Experimental Pathology (013031100)