The geometry of protein hydration

Research output: Contribution to journalArticle


Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Chemistry
Original languageEnglish
Article number215101
JournalJournal of Chemical Physics
Issue number21
Publication statusPublished - 2018 Jun 7
Publication categoryResearch