The Influence of Net Charge and Charge Location on Adsorption and Dodecyltrimethylammonium Bromide-Mediated Elutability of Bacteriophage T4 Lysozyme at Silica Surfaces

Research output: Contribution to journalArticle

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - The Influence of Net Charge and Charge Location on Adsorption and Dodecyltrimethylammonium Bromide-Mediated Elutability of Bacteriophage T4 Lysozyme at Silica Surfaces

AU - McGuire, J

AU - Wahlgren, M

AU - Arnebrant, T

PY - 1995

Y1 - 1995

N2 - The effect of net charge and charge location on the adsorption and dodecyltrimethylammonium bromide (DTAB)-mediated elutability of bacteriophage T4 lysozyme was monitored at hydrophilic and hydrophobic silica surfaces with in situ ellipsometry. Mutant lysozymes were produced by substitution of selected lysine residues with glutamic acid, each substitution thus decreasing the net charge of the protein by 2 units. The wild-type protein (net charge +9) and four mutant proteins, each of net charge +7 or +5, were purified from Escherichia coli strains harboring the desired expression vectors. Differences in interfacial behavior among the proteins were observed with respect to both the adsorption kinetics and the DTAB-mediated elutability exhibited by each. No simple relationship between protein net charge and surface behavior was observed, indicating that the location of the charge replacements had the major effect on surface behavior. At hydrophilic surfaces, mutations allowing the most mobile regions of positive charge to more readily orient toward the interface increased that protein's resistance to elutability; at hydrophobic surfaces, mutations favoring or otherwise not inhibiting hydrophobic association between the protein and the surface increased the resistance to elutability. This was not related to protein net charge, but to the probable influence of the location of each substitution relative to the other mobile, solvent-exposed, charged side chains of the molecule.

AB - The effect of net charge and charge location on the adsorption and dodecyltrimethylammonium bromide (DTAB)-mediated elutability of bacteriophage T4 lysozyme was monitored at hydrophilic and hydrophobic silica surfaces with in situ ellipsometry. Mutant lysozymes were produced by substitution of selected lysine residues with glutamic acid, each substitution thus decreasing the net charge of the protein by 2 units. The wild-type protein (net charge +9) and four mutant proteins, each of net charge +7 or +5, were purified from Escherichia coli strains harboring the desired expression vectors. Differences in interfacial behavior among the proteins were observed with respect to both the adsorption kinetics and the DTAB-mediated elutability exhibited by each. No simple relationship between protein net charge and surface behavior was observed, indicating that the location of the charge replacements had the major effect on surface behavior. At hydrophilic surfaces, mutations allowing the most mobile regions of positive charge to more readily orient toward the interface increased that protein's resistance to elutability; at hydrophobic surfaces, mutations favoring or otherwise not inhibiting hydrophobic association between the protein and the surface increased the resistance to elutability. This was not related to protein net charge, but to the probable influence of the location of each substitution relative to the other mobile, solvent-exposed, charged side chains of the molecule.

U2 - 10.1006/jcis.1995.1088

DO - 10.1006/jcis.1995.1088

M3 - Article

VL - 170

SP - 193

EP - 202

JO - Journal of Colloid and Interface Science

T2 - Journal of Colloid and Interface Science

JF - Journal of Colloid and Interface Science

SN - 0021-9797

IS - 1

ER -