Time-resolved metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control of insulin release

Research output: Contribution to journalArticle

Abstract

Insulin secretion is coupled with changes in beta-cell metabolism. To define this process, 195 putative metabolites, mitochondrial respiration, NADP(+), NADPH and insulin secretion were measured within 15 mm of stimulation of clonal INS-1 832/13 beta-cells with glucose. Rapid responses in the major metabolic pathways of glucose occurred, involving several previously suggested metabolic coupling factors. The complexity of metabolite changes observed disagreed with the concept of one single metabolite controlling insulin secretion. The complex alterations in metabolite levels suggest that a coupling signal should reflect large parts of the beta-cell metabolic response. This was fulfilled by the NADPH/NADP(+) ratio, which was elevated (8-fold; P < 0.01) at 6 min after glucose stimulation. The NADPH/NADP+ ratio paralleled an increase in ribose 5-phosphate (>2.5-fold; P < 0.001). Inhibition of the pentose phosphate pathway by trans-dehydroepiandrosterone (DHEA) suppressed ribose 5-phosphate levels and production of reduced glutathione, as well as insulin secretion in INS-1 832/13 beta-cells and rat islets without affecting ATP production. Metabolite profiling of rat islets confirmed the glucose-induced rise in ribose 5-phosphate, which was prevented by DHEA. These findings implicate the pentose phosphate pathway, and support a role for NADPH and glutathione, in beta-cell stimulus-secretion coupling.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biochemistry and Molecular Biology

Keywords

  • glutathione, islets, mass spectrometry, NADPH, ribose 5-phosphate, Type, 2 diabetes
Original languageEnglish
Pages (from-to)595-605
JournalBiochemical Journal
Volume450
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes