Titanium dioxide thin-film growth on silicon(111) by chemical vapor deposition of titanium(IV) isopropoxide

Research output: Contribution to journalArticle


The initial stages of TiO2 growth on Si(111) under ultra-high vacuum conditions is studied using core level photoelectron spectroscopy, x-ray absorption spectroscopy, and scanning tunneling microscopy. The TiO2 film was formed by means of chemical vapor deposition of titanium(IV) isopropoxide at a sample temperature of 500 degreesC. The thickness and composition of the amorphous interface layer and its subsequent transition to crystalline anatase TiO2 are discussed. Three different stages are identified: In the initial stage (film thickness <10 Angstrom), the oxygen atoms are coordinated mainly to Si atoms giving rise to Ti atoms with oxidation states lower than 4+. At this stage, a small amount of carbon (0.15 ML) is observed. The next stage (<25 Angstrom) is best described as an amorphous TiSixOy compound in which the oxidation state of Ti is 4+ and the x and y values vary monotonically with the film thickness, from 2 to 0 and 4 to 2, respectively. Finally (>30 Angstrom) a stoichiometric TiO2 layer starts to form. The TiO2 phase is anatase and the layer consists of particles similar to10 nm wide.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
  • Condensed Matter Physics
Original languageEnglish
Pages (from-to)3381-3387
JournalApplied Physics Reviews
Issue number6
Publication statusPublished - 2002
Publication categoryResearch

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Chemical Physics (S) (011001060), Solid State Physics (011013006), Synchrotron Radiation Research (011013009)