Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production.

Research output: Contribution to journalArticle

Abstract

Moths generally rely on pheromone communication for mate finding. The pheromone components of most moths are produced by a common pathway of fatty-acid biosynthesis coupled with species-specific modifications of the final products. Some genes involved in moth pheromone production have previously been described, whereas others remain to be characterized and thus the molecular mechanisms accounting for the production of species-specific blends are far from understood. The turnip moth, Agrotis segetum, has a multicomponent pheromone, consisting of at least four components derived from palmitic and stearic acid. Different populations produce and respond to different pheromone blends, which makes this species an excellent model for research on genes and molecular mechanisms involved in moth pheromone production. For this purpose, we performed an expressed sequence tag (EST) analysis of two cDNA libraries, one representing the female pheromone gland and the other representing the remainder of the insect body. Among 2285 ESTs analysed altogether, we identified a unigene set of 707 putative gene representatives. The comparative distribution of those in the two libraries showed the transcriptomes of the tissues to be clearly different. One third of the gene representatives were exclusively found in the pheromone gland. From sequence homology to public database information we assigned putative functional roles for a majority of the unigenes and then compared functional profiles of the two tissues. In the set of ESTs more abundant in the pheromone gland library, we found homologues of an acyl-CoA Delta11-desaturase, a G-protein subunit, a chemosensory protein as well as a juvenile hormone binding protein.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biological Sciences

Keywords

  • RNA, Messenger: biosynthesis, Messenger: genetics, Sex Attractants: biosynthesis, Sex Attractants: genetics, Moths: metabolism, Moths: genetics
Original languageEnglish
Pages (from-to)73-85
JournalInsect Molecular Biology
Volume17
Issue number1
Publication statusPublished - 2008
Publication categoryResearch
Peer-reviewedYes

Related projects

Baojian Ding, Christer Löfstedt & Hong-Lei Wang

2013/01/012016/12/31

Project: Research

View all (1)