Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging

Research output: Contribution to journalArticle


Autoignition of propane in air was visualised in a turbulent flow reactor using natural OH*-chemiluminescence imaging. The spatial and temporal development of autoignition kernels was studied in an optically accessible tubular section of the reactor. Kernel nucleation, movement and growth affected the location and movement of subsequent autoignition sites, and resulted in stagnation of the incoming flow and flashback. The autoignition delays of the reactants were measured under various conditions of temperature, pressure and equivalence ratio, relevant to micro gas turbines: Temperature T= 803-903 K, pressure p = 0.4-0.6 MPa, equivalence ratio phi = 0.2-0.6, mass flow rate of reactants m(r) = 8-21 g/s, with ignition delays tau between 191 and 498 ms. The effect of diluting the propane + air mixtures with CO2 was investigated for mole fractions of 0 <X-CO2 < 0.1. An empirical correlation for the autoignition delays was developed for the aforementioned conditions, and values of activation energy were calculated on the basis of the experimental data. The ignition delay times were compared with the predictions of chemical kinetic models and experimental data previously reported in the literature. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.


Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics
  • Energy Engineering


  • Autoignition, Flashback, Propane, Flow reactor
Original languageEnglish
Pages (from-to)1033-1043
JournalCombustion and Flame
Issue number6
Publication statusPublished - 2013
Publication categoryResearch