Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.

Research output: Contribution to journalArticle

Abstract

Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Biological Sciences

Keywords

  • bird Ficedula hypoleuca, aerodynamic flight performance, inclined stroke plane hovering, slow flight, wind tunnel, PIV
Original languageEnglish
Pages (from-to)292-303
JournalJournal of the Royal Society Interface
Volume9
Publication statusPublished - 2012
Publication categoryResearch
Peer-reviewedYes

Related projects

Niklas Larsson, Atticus Pinzon-Rodriguez, Arne Hegemann, Brianne Addison, Charlie Cornwallis, Giuseppe Bianco, INGRID SASSENHAGEN, Jerker Vinterstare, Julian Melgar, Júlio Manuel Neto, Lasse Jakobsen, Mikael Ekvall, Mihaela Ilieva, Natalia Annenkova, Pallavi Chauhan, Sylvie Tesson, Yannis Vardanis, Catherine Tayleur, Emily Baird, Olle Lind, Jakob Löndahl, Tina Santl-Temkiv, Anders Hedenström, Åke Lindström, Anders Nilsson, Bengt Hansson, Dennis Hasselquist, Erik Svensson, Henrik Smith, Helena Westerdahl, Jan-Åke Nilsson, Johan Bäckman, Katarina Hedlund, Lars Råberg, Maria Ingimarsdottir, Martin Green, Maria Sandell, Martin Stjernman, Nils Kjellén, Ola Olsson, Rachel Muheim, Richard Ottvall, Staffan Bensch, Xiuhong Yang, Sara Snogerup-Linse, Heiner Linke, Mikkel Brydegaard Sorensen, Patrik Lundin, Sune Svanberg, Zuguang Guan, Ann-Sofie Albrekt, Anders Hargeby, Anders Persson, Christer Brönmark, Emma Kritzberg, Karin Rengefors, Lars-Anders Hansson, Olof Berglund, Wilhelm Granéli, Alice Nicolle, Ben Chapman, Christian Skov, Johan Ahlgren, Jakob Brodersen, Jessica von Einem, Kaj Hulthén, Kelly Gutseit, Karen Lebret, Lynn Ranåker, MATTIAS EKVALL, Mercy Lard, MIKAEL JÖNSSON, PER HALLGREN, Peter Ljungberg, Samuel Hylander, Tony Fagerberg, Therese Jephson, Tomas Johansson, Bjorn Canback, Bengt Danielsson, Christoffer Johansson, Emma Ådahl, Florian Muijres, Melissa Bowlin, Niclas Jonzén, Per Henningsson, Roger Härdling, Andreas Nord, Arzu Gursoy, Asghar Muhammad, Anna Nilsson, Anna Runemark, Barbara Tschirren, Cecilia Nilsson, Håkan Karlsson, Irene Pala, Juliana Dänhardt, Johan Nilsson, Jens Rydell, Jonas Waldenström, Keith Larson, Kristina Karlsson, Kristin Scherman, Mikael Åkesson, Martin Andersson, Maja Tarka, Maren Wellenreuther, Max Lundberg, Miriam Liedvogel, Maj Rundlöf, Martin Wintersparv Stervander, Machteld Verzijden, Olof Hellgren, Raymond Klaassen, Roine Strandberg, Susanne Åkesson, SANDRA SKÖLD CHIRIAC, Sophia Engel, Sissel Sjöberg, Sara Naurin, Thomas Alerstam, Tom J Evans, Torbjörn von Schantz, Ulf Ottosson, Marie Dacke & Helena Osvath

2008/06/012018/12/31

Project: ResearchInterdisciplinary research

View all (1)