Well-defined phosphonated homo- and copolymers via direct ring opening metathesis polymerization

Research output: Contribution to journalArticle

Abstract

Phosphonated polymers with a well-defined molecular weight, composition, and architecture have been prepared via ring opening metathesis polymerization (ROMP) of diethyl phosphonate norbornene imides at room temperature for the first time. ROMP gave a broad range of phosphonated homopolymers, statistical, diblock and triblock copolymers based on poly(norbornene imide)s with low polydispersity (1.09-1.32) Complete hydrolysis of diethyl phosphonate poly(norbornene imide)s under mild conditions yielded the phosphonic acid derivatives. Thermogravimetric analysis indicated high thermal and thermo-oxidative stability of the polymers. Free standing and transparent films with good mechanical stability were obtained from the phosphonic acid functional homopolymers, diblock and triblock copolymers. Combining these basic properties with the advantages mentioned above make ROMP a promising pathway for accessing a wide diversity of phosphonated macromolecular structures. These new phosphonated polymers will open new perspectives in advanced application areas such as medicine and membrane science, which require a high level of control over polymer structure.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Chemical Sciences
Original languageEnglish
Pages (from-to)6676-6688
JournalPolymer
Volume54
Issue number25
Publication statusPublished - 2013
Publication categoryResearch
Peer-reviewedYes

Bibliographic note

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010–2013) under the call ENERGY-2010-10.2-1: Future Emerging Technologies for Energy Applications (FET) under contract 256821 QuasiDry.