Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna

Research output: Contribution to journalArticle


Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880 - 1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5% of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N) reversible arrow LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.


  • T. J. Avenson
  • T. K. Ahn
  • Donatas Zigmantas
  • K. K. Niyogi
  • Z. Li
  • M. Ballottari
  • R. Bassi
  • G. R. Fleming
External organisations
  • Lawrence Berkeley National Laboratory
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Atom and Molecular Physics and Optics


  • xanthophyll cycle, chlorophyll fluorescence, resolved fluorescence analysis, photosystem-ii, energy-dissipation, excited-states, in-vivo, protein cp26, oxygenic photosynthesis, green plants
Original languageEnglish
Pages (from-to)3550-3558
JournalJournal of Biological Chemistry
Issue number6
Publication statusPublished - 2008
Publication categoryResearch
Externally publishedYes

Bibliographic note

The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Chemical Physics (S) (011001060)